记录一下yolo v5从零训练COCO数据集的情况

365bet官网多少 🗓 2025-07-26 18:28:06 ✍ admin 👁 8005 👍 947
记录一下yolo v5从零训练COCO数据集的情况

关于coco2017数据集

coco2017 80个类别

训练集118287 验证集 5000 测试集40670 一共163957

训练集中有117266被标注(每张图片有多个不同种类的目标) 验证集中有4952张被标注

关于混合精度训练

yolov5默认开启混合精度训练:

# Forward

with torch.cuda.amp.autocast(amp):

pred = model(imgs) # forward

loss, loss_items = compute_loss(pred, targets.to(device)) # loss scaled by batch_size

if RANK != -1:

loss *= WORLD_SIZE # gradient averaged between devices in DDP mode

if opt.quad:

loss *= 4.

官方说的是在单卡V100显卡上大概训练s模型需要2天

我这里是单卡3090,如果是基于预训练模型训练,用时不到4天半,55个小时,但是从零训练应该不能基于预训练模型,如果weights不传参,训练就很慢了,大概测算需要多半个月。

基于预训练模型训练完后的日志,忘了保存,只有一部分:

fork 5000 215 0.646 0.349 0.431 0.248

knife 5000 325 0.516 0.206 0.223 0.111

spoon 5000 253 0.54 0.19 0.229 0.117

bowl 5000 623 0.616 0.475 0.516 0.356

banana 5000 370 0.486 0.332 0.343 0.175

apple 5000 236 0.433 0.275 0.219 0.138

sandwich 5000 177 0.61 0.458 0.487 0.314

orange 5000 285 0.492 0.373 0.349 0.255

broccoli 5000 312 0.485 0.394 0.377 0.184

carrot 5000 365 0.381 0.359 0.309 0.184

hot dog 5000 125 0.62 0.472 0.477 0.31

pizza 5000 284 0.712 0.634 0.668 0.455

donut 5000 328 0.547 0.491 0.5 0.372

cake 5000 310 0.618 0.439 0.508 0.31

chair 5000 1771 0.596 0.404 0.451 0.257

couch 5000 261 0.707 0.489 0.596 0.398

potted plant 5000 342 0.564 0.415 0.435 0.235

bed 5000 163 0.709 0.509 0.591 0.368

dining table 5000 695 0.592 0.357 0.394 0.241

toilet 5000 179 0.805 0.76 0.829 0.607

tv 5000 288 0.758 0.664 0.735 0.521

laptop 5000 231 0.765 0.649 0.706 0.538

mouse 5000 106 0.804 0.708 0.762 0.543

remote 5000 283 0.547 0.406 0.433 0.215

keyboard 5000 153 0.652 0.575 0.658 0.423

cell phone 5000 262 0.595 0.454 0.488 0.296

microwave 5000 55 0.631 0.636 0.712 0.494

oven 5000 143 0.626 0.448 0.535 0.304

toaster 5000 9 0.793 0.333 0.515 0.355

sink 5000 225 0.656 0.498 0.556 0.338

refrigerator 5000 126 0.759 0.603 0.69 0.489

book 5000 1129 0.455 0.181 0.219 0.0885

clock 5000 267 0.777 0.704 0.735 0.471

vase 5000 274 0.566 0.496 0.482 0.311

scissors 5000 36 0.566 0.222 0.246 0.18

teddy bear 5000 190 0.721 0.526 0.611 0.373

hair drier 5000 11 1 0 0.0206 0.00303

toothbrush 5000 57 0.529 0.298 0.344 0.19

Evaluating pycocotools mAP... saving runs/train/exp/_predictions.json...

loading annotations into memory...

Done (t=0.53s)

creating index...

index created!

Loading and preparing results...

DONE (t=3.21s)

creating index...

index created!

Running per image evaluation...

Evaluate annotation type *bbox*

DONE (t=41.97s).

Accumulating evaluation results...

DONE (t=6.99s).

Average Precision (AP) @[ IoU=0.50:0.95 | area= all | maxDets=100 ] = 0.372

Average Precision (AP) @[ IoU=0.50 | area= all | maxDets=100 ] = 0.566

Average Precision (AP) @[ IoU=0.75 | area= all | maxDets=100 ] = 0.402

Average Precision (AP) @[ IoU=0.50:0.95 | area= small | maxDets=100 ] = 0.209

Average Precision (AP) @[ IoU=0.50:0.95 | area=medium | maxDets=100 ] = 0.422

Average Precision (AP) @[ IoU=0.50:0.95 | area= large | maxDets=100 ] = 0.477

Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets= 1 ] = 0.309

Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets= 10 ] = 0.514

Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets=100 ] = 0.570

Average Recall (AR) @[ IoU=0.50:0.95 | area= small | maxDets=100 ] = 0.374

Average Recall (AR) @[ IoU=0.50:0.95 | area=medium | maxDets=100 ] = 0.631

Average Recall (AR) @[ IoU=0.50:0.95 | area= large | maxDets=100 ] = 0.716

Results saved to runs/train/exp

训练好的模型和结果在 从零训练yolov5在COCO数据集上的模型和结果-深度学习文档类资源-CSDN下载

相关推荐

中央电视台主持人大全
365bet官网多少

中央电视台主持人大全

🗓 06-27 👁 6826
一個日一個火是什麼字?
谁有365bet网址

一個日一個火是什麼字?

🗓 07-09 👁 1795